Metamath Proof Explorer


Theorem elpwiuncl

Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses elpwiuncl.1 φ A V
elpwiuncl.2 φ k A B 𝒫 C
Assertion elpwiuncl φ k A B 𝒫 C

Proof

Step Hyp Ref Expression
1 elpwiuncl.1 φ A V
2 elpwiuncl.2 φ k A B 𝒫 C
3 2 elpwid φ k A B C
4 3 ralrimiva φ k A B C
5 iunss k A B C k A B C
6 4 5 sylibr φ k A B C
7 2 ralrimiva φ k A B 𝒫 C
8 1 7 jca φ A V k A B 𝒫 C
9 iunexg A V k A B 𝒫 C k A B V
10 elpwg k A B V k A B 𝒫 C k A B C
11 8 9 10 3syl φ k A B 𝒫 C k A B C
12 6 11 mpbird φ k A B 𝒫 C