Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Introduce the Axiom of Union
elpwun
Next ⟩
pwuncl
Metamath Proof Explorer
Ascii
Unicode
Theorem
elpwun
Description:
Membership in the power class of a union.
(Contributed by
NM
, 26-Mar-2007)
Ref
Expression
Hypothesis
eldifpw.1
⊢
C
∈
V
Assertion
elpwun
⊢
A
∈
𝒫
B
∪
C
↔
A
∖
C
∈
𝒫
B
Proof
Step
Hyp
Ref
Expression
1
eldifpw.1
⊢
C
∈
V
2
elex
⊢
A
∈
𝒫
B
∪
C
→
A
∈
V
3
elex
⊢
A
∖
C
∈
𝒫
B
→
A
∖
C
∈
V
4
difex2
⊢
C
∈
V
→
A
∈
V
↔
A
∖
C
∈
V
5
1
4
ax-mp
⊢
A
∈
V
↔
A
∖
C
∈
V
6
3
5
sylibr
⊢
A
∖
C
∈
𝒫
B
→
A
∈
V
7
elpwg
⊢
A
∈
V
→
A
∈
𝒫
B
∪
C
↔
A
⊆
B
∪
C
8
uncom
⊢
B
∪
C
=
C
∪
B
9
8
sseq2i
⊢
A
⊆
B
∪
C
↔
A
⊆
C
∪
B
10
ssundif
⊢
A
⊆
C
∪
B
↔
A
∖
C
⊆
B
11
9
10
bitri
⊢
A
⊆
B
∪
C
↔
A
∖
C
⊆
B
12
difexg
⊢
A
∈
V
→
A
∖
C
∈
V
13
elpwg
⊢
A
∖
C
∈
V
→
A
∖
C
∈
𝒫
B
↔
A
∖
C
⊆
B
14
12
13
syl
⊢
A
∈
V
→
A
∖
C
∈
𝒫
B
↔
A
∖
C
⊆
B
15
11
14
bitr4id
⊢
A
∈
V
→
A
⊆
B
∪
C
↔
A
∖
C
∈
𝒫
B
16
7
15
bitrd
⊢
A
∈
V
→
A
∈
𝒫
B
∪
C
↔
A
∖
C
∈
𝒫
B
17
2
6
16
pm5.21nii
⊢
A
∈
𝒫
B
∪
C
↔
A
∖
C
∈
𝒫
B