Metamath Proof Explorer


Theorem elpwun

Description: Membership in the power class of a union. (Contributed by NM, 26-Mar-2007)

Ref Expression
Hypothesis eldifpw.1 C V
Assertion elpwun A 𝒫 B C A C 𝒫 B

Proof

Step Hyp Ref Expression
1 eldifpw.1 C V
2 elex A 𝒫 B C A V
3 elex A C 𝒫 B A C V
4 difex2 C V A V A C V
5 1 4 ax-mp A V A C V
6 3 5 sylibr A C 𝒫 B A V
7 elpwg A V A 𝒫 B C A B C
8 uncom B C = C B
9 8 sseq2i A B C A C B
10 ssundif A C B A C B
11 9 10 bitri A B C A C B
12 difexg A V A C V
13 elpwg A C V A C 𝒫 B A C B
14 12 13 syl A V A C 𝒫 B A C B
15 11 14 bitr4id A V A B C A C 𝒫 B
16 7 15 bitrd A V A 𝒫 B C A C 𝒫 B
17 2 6 16 pm5.21nii A 𝒫 B C A C 𝒫 B