Metamath Proof Explorer


Theorem elpwunsn

Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007)

Ref Expression
Assertion elpwunsn A 𝒫 B C 𝒫 B C A

Proof

Step Hyp Ref Expression
1 eldif A 𝒫 B C 𝒫 B A 𝒫 B C ¬ A 𝒫 B
2 elpwg A 𝒫 B C A 𝒫 B A B
3 dfss3 A B x A x B
4 2 3 bitrdi A 𝒫 B C A 𝒫 B x A x B
5 4 notbid A 𝒫 B C ¬ A 𝒫 B ¬ x A x B
6 5 biimpa A 𝒫 B C ¬ A 𝒫 B ¬ x A x B
7 rexnal x A ¬ x B ¬ x A x B
8 6 7 sylibr A 𝒫 B C ¬ A 𝒫 B x A ¬ x B
9 elpwi A 𝒫 B C A B C
10 ssel A B C x A x B C
11 elun x B C x B x C
12 elsni x C x = C
13 12 orim2i x B x C x B x = C
14 13 ord x B x C ¬ x B x = C
15 11 14 sylbi x B C ¬ x B x = C
16 15 imim2i x A x B C x A ¬ x B x = C
17 16 impd x A x B C x A ¬ x B x = C
18 9 10 17 3syl A 𝒫 B C x A ¬ x B x = C
19 eleq1 x = C x A C A
20 19 biimpd x = C x A C A
21 18 20 syl6 A 𝒫 B C x A ¬ x B x A C A
22 21 expd A 𝒫 B C x A ¬ x B x A C A
23 22 com4r x A A 𝒫 B C x A ¬ x B C A
24 23 pm2.43b A 𝒫 B C x A ¬ x B C A
25 24 rexlimdv A 𝒫 B C x A ¬ x B C A
26 25 imp A 𝒫 B C x A ¬ x B C A
27 8 26 syldan A 𝒫 B C ¬ A 𝒫 B C A
28 1 27 sylbi A 𝒫 B C 𝒫 B C A