Metamath Proof Explorer


Theorem elq

Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002) (Revised by Mario Carneiro, 28-Jan-2014)

Ref Expression
Assertion elq A x y A = x y

Proof

Step Hyp Ref Expression
1 df-q = ÷ ×
2 1 eleq2i A A ÷ ×
3 df-div ÷ = x , y 0 ι z | y z = x
4 riotaex ι z | y z = x V
5 3 4 fnmpoi ÷ Fn × 0
6 zsscn
7 nncn x x
8 nnne0 x x 0
9 eldifsn x 0 x x 0
10 7 8 9 sylanbrc x x 0
11 10 ssriv 0
12 xpss12 0 × × 0
13 6 11 12 mp2an × × 0
14 ovelimab ÷ Fn × 0 × × 0 A ÷ × x y A = x y
15 5 13 14 mp2an A ÷ × x y A = x y
16 2 15 bitri A x y A = x y