Metamath Proof Explorer


Theorem elqaalem3

Description: Lemma for elqaa . (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses elqaa.1 φ A
elqaa.2 φ F Poly 0 𝑝
elqaa.3 φ F A = 0
elqaa.4 B = coeff F
elqaa.5 N = k 0 sup n | B k n <
elqaa.6 R = seq 0 × N deg F
Assertion elqaalem3 φ A 𝔸

Proof

Step Hyp Ref Expression
1 elqaa.1 φ A
2 elqaa.2 φ F Poly 0 𝑝
3 elqaa.3 φ F A = 0
4 elqaa.4 B = coeff F
5 elqaa.5 N = k 0 sup n | B k n <
6 elqaa.6 R = seq 0 × N deg F
7 cnex V
8 7 a1i φ V
9 6 fvexi R V
10 9 a1i φ z R V
11 fvexd φ z F z V
12 fconstmpt × R = z R
13 12 a1i φ × R = z R
14 2 eldifad φ F Poly
15 plyf F Poly F :
16 14 15 syl φ F :
17 16 feqmptd φ F = z F z
18 8 10 11 13 17 offval2 φ × R × f F = z R F z
19 fzfid φ z 0 deg F Fin
20 nn0uz 0 = 0
21 0zd φ 0
22 ssrab2 n | B m n
23 fveq2 k = m B k = B m
24 23 oveq1d k = m B k n = B m n
25 24 eleq1d k = m B k n B m n
26 25 rabbidv k = m n | B k n = n | B m n
27 26 infeq1d k = m sup n | B k n < = sup n | B m n <
28 ltso < Or
29 28 infex sup n | B m n < V
30 27 5 29 fvmpt m 0 N m = sup n | B m n <
31 30 adantl φ m 0 N m = sup n | B m n <
32 nnuz = 1
33 22 32 sseqtri n | B m n 1
34 0z 0
35 zq 0 0
36 34 35 ax-mp 0
37 4 coef2 F Poly 0 B : 0
38 14 36 37 sylancl φ B : 0
39 38 ffvelrnda φ m 0 B m
40 qmulz B m n B m n
41 39 40 syl φ m 0 n B m n
42 rabn0 n | B m n n B m n
43 41 42 sylibr φ m 0 n | B m n
44 infssuzcl n | B m n 1 n | B m n sup n | B m n < n | B m n
45 33 43 44 sylancr φ m 0 sup n | B m n < n | B m n
46 31 45 eqeltrd φ m 0 N m n | B m n
47 22 46 sselid φ m 0 N m
48 nnmulcl m k m k
49 48 adantl φ m k m k
50 20 21 47 49 seqf φ seq 0 × N : 0
51 dgrcl F Poly deg F 0
52 14 51 syl φ deg F 0
53 50 52 ffvelrnd φ seq 0 × N deg F
54 6 53 eqeltrid φ R
55 54 nncnd φ R
56 55 adantr φ z R
57 elfznn0 m 0 deg F m 0
58 4 coef3 F Poly B : 0
59 14 58 syl φ B : 0
60 59 adantr φ z B : 0
61 60 ffvelrnda φ z m 0 B m
62 expcl z m 0 z m
63 62 adantll φ z m 0 z m
64 61 63 mulcld φ z m 0 B m z m
65 57 64 sylan2 φ z m 0 deg F B m z m
66 19 56 65 fsummulc2 φ z R m = 0 deg F B m z m = m = 0 deg F R B m z m
67 eqid deg F = deg F
68 4 67 coeid2 F Poly z F z = m = 0 deg F B m z m
69 14 68 sylan φ z F z = m = 0 deg F B m z m
70 69 oveq2d φ z R F z = R m = 0 deg F B m z m
71 56 adantr φ z m 0 R
72 71 61 63 mulassd φ z m 0 R B m z m = R B m z m
73 57 72 sylan2 φ z m 0 deg F R B m z m = R B m z m
74 73 sumeq2dv φ z m = 0 deg F R B m z m = m = 0 deg F R B m z m
75 66 70 74 3eqtr4d φ z R F z = m = 0 deg F R B m z m
76 75 mpteq2dva φ z R F z = z m = 0 deg F R B m z m
77 18 76 eqtrd φ × R × f F = z m = 0 deg F R B m z m
78 zsscn
79 78 a1i φ
80 55 adantr φ m 0 R
81 47 nncnd φ m 0 N m
82 47 nnne0d φ m 0 N m 0
83 80 81 82 divcan2d φ m 0 N m R N m = R
84 83 oveq2d φ m 0 B m N m R N m = B m R
85 59 ffvelrnda φ m 0 B m
86 80 81 82 divcld φ m 0 R N m
87 85 81 86 mulassd φ m 0 B m N m R N m = B m N m R N m
88 80 85 mulcomd φ m 0 R B m = B m R
89 84 87 88 3eqtr4rd φ m 0 R B m = B m N m R N m
90 57 89 sylan2 φ m 0 deg F R B m = B m N m R N m
91 oveq2 n = N m B m n = B m N m
92 91 eleq1d n = N m B m n B m N m
93 92 elrab N m n | B m n N m B m N m
94 93 simprbi N m n | B m n B m N m
95 46 94 syl φ m 0 B m N m
96 57 95 sylan2 φ m 0 deg F B m N m
97 eqid x V , y V x y mod N m = x V , y V x y mod N m
98 1 2 3 4 5 6 97 elqaalem2 φ m 0 deg F R mod N m = 0
99 54 adantr φ m 0 deg F R
100 57 47 sylan2 φ m 0 deg F N m
101 nnre R R
102 nnrp N m N m +
103 mod0 R N m + R mod N m = 0 R N m
104 101 102 103 syl2an R N m R mod N m = 0 R N m
105 99 100 104 syl2anc φ m 0 deg F R mod N m = 0 R N m
106 98 105 mpbid φ m 0 deg F R N m
107 96 106 zmulcld φ m 0 deg F B m N m R N m
108 90 107 eqeltrd φ m 0 deg F R B m
109 79 52 108 elplyd φ z m = 0 deg F R B m z m Poly
110 77 109 eqeltrd φ × R × f F Poly
111 eldifsn F Poly 0 𝑝 F Poly F 0 𝑝
112 2 111 sylib φ F Poly F 0 𝑝
113 112 simprd φ F 0 𝑝
114 oveq1 × R × f F = 0 𝑝 × R × f F ÷ f × R = 0 𝑝 ÷ f × R
115 16 ffvelrnda φ z F z
116 54 nnne0d φ R 0
117 116 adantr φ z R 0
118 115 56 117 divcan3d φ z R F z R = F z
119 118 mpteq2dva φ z R F z R = z F z
120 ovexd φ z R F z V
121 8 120 10 18 13 offval2 φ × R × f F ÷ f × R = z R F z R
122 119 121 17 3eqtr4d φ × R × f F ÷ f × R = F
123 55 116 div0d φ 0 R = 0
124 123 mpteq2dv φ z 0 R = z 0
125 0cnd φ z 0
126 df-0p 0 𝑝 = × 0
127 fconstmpt × 0 = z 0
128 126 127 eqtri 0 𝑝 = z 0
129 128 a1i φ 0 𝑝 = z 0
130 8 125 10 129 13 offval2 φ 0 𝑝 ÷ f × R = z 0 R
131 124 130 129 3eqtr4d φ 0 𝑝 ÷ f × R = 0 𝑝
132 122 131 eqeq12d φ × R × f F ÷ f × R = 0 𝑝 ÷ f × R F = 0 𝑝
133 114 132 syl5ib φ × R × f F = 0 𝑝 F = 0 𝑝
134 133 necon3d φ F 0 𝑝 × R × f F 0 𝑝
135 113 134 mpd φ × R × f F 0 𝑝
136 eldifsn × R × f F Poly 0 𝑝 × R × f F Poly × R × f F 0 𝑝
137 110 135 136 sylanbrc φ × R × f F Poly 0 𝑝
138 9 fconst × R : R
139 ffn × R : R × R Fn
140 138 139 mp1i φ × R Fn
141 16 ffnd φ F Fn
142 inidm =
143 9 fvconst2 A × R A = R
144 143 adantl φ A × R A = R
145 3 adantr φ A F A = 0
146 140 141 8 8 142 144 145 ofval φ A × R × f F A = R 0
147 1 146 mpdan φ × R × f F A = R 0
148 55 mul01d φ R 0 = 0
149 147 148 eqtrd φ × R × f F A = 0
150 fveq1 f = × R × f F f A = × R × f F A
151 150 eqeq1d f = × R × f F f A = 0 × R × f F A = 0
152 151 rspcev × R × f F Poly 0 𝑝 × R × f F A = 0 f Poly 0 𝑝 f A = 0
153 137 149 152 syl2anc φ f Poly 0 𝑝 f A = 0
154 elaa A 𝔸 A f Poly 0 𝑝 f A = 0
155 1 153 154 sylanbrc φ A 𝔸