Step |
Hyp |
Ref |
Expression |
1 |
|
elqaa.1 |
|
2 |
|
elqaa.2 |
|
3 |
|
elqaa.3 |
|
4 |
|
elqaa.4 |
|
5 |
|
elqaa.5 |
|
6 |
|
elqaa.6 |
|
7 |
|
cnex |
|
8 |
7
|
a1i |
|
9 |
6
|
fvexi |
|
10 |
9
|
a1i |
|
11 |
|
fvexd |
|
12 |
|
fconstmpt |
|
13 |
12
|
a1i |
|
14 |
2
|
eldifad |
|
15 |
|
plyf |
|
16 |
14 15
|
syl |
|
17 |
16
|
feqmptd |
|
18 |
8 10 11 13 17
|
offval2 |
|
19 |
|
fzfid |
|
20 |
|
nn0uz |
|
21 |
|
0zd |
|
22 |
|
ssrab2 |
|
23 |
|
fveq2 |
|
24 |
23
|
oveq1d |
|
25 |
24
|
eleq1d |
|
26 |
25
|
rabbidv |
|
27 |
26
|
infeq1d |
|
28 |
|
ltso |
|
29 |
28
|
infex |
|
30 |
27 5 29
|
fvmpt |
|
31 |
30
|
adantl |
|
32 |
|
nnuz |
|
33 |
22 32
|
sseqtri |
|
34 |
|
0z |
|
35 |
|
zq |
|
36 |
34 35
|
ax-mp |
|
37 |
4
|
coef2 |
|
38 |
14 36 37
|
sylancl |
|
39 |
38
|
ffvelrnda |
|
40 |
|
qmulz |
|
41 |
39 40
|
syl |
|
42 |
|
rabn0 |
|
43 |
41 42
|
sylibr |
|
44 |
|
infssuzcl |
|
45 |
33 43 44
|
sylancr |
|
46 |
31 45
|
eqeltrd |
|
47 |
22 46
|
sselid |
|
48 |
|
nnmulcl |
|
49 |
48
|
adantl |
|
50 |
20 21 47 49
|
seqf |
|
51 |
|
dgrcl |
|
52 |
14 51
|
syl |
|
53 |
50 52
|
ffvelrnd |
|
54 |
6 53
|
eqeltrid |
|
55 |
54
|
nncnd |
|
56 |
55
|
adantr |
|
57 |
|
elfznn0 |
|
58 |
4
|
coef3 |
|
59 |
14 58
|
syl |
|
60 |
59
|
adantr |
|
61 |
60
|
ffvelrnda |
|
62 |
|
expcl |
|
63 |
62
|
adantll |
|
64 |
61 63
|
mulcld |
|
65 |
57 64
|
sylan2 |
|
66 |
19 56 65
|
fsummulc2 |
|
67 |
|
eqid |
|
68 |
4 67
|
coeid2 |
|
69 |
14 68
|
sylan |
|
70 |
69
|
oveq2d |
|
71 |
56
|
adantr |
|
72 |
71 61 63
|
mulassd |
|
73 |
57 72
|
sylan2 |
|
74 |
73
|
sumeq2dv |
|
75 |
66 70 74
|
3eqtr4d |
|
76 |
75
|
mpteq2dva |
|
77 |
18 76
|
eqtrd |
|
78 |
|
zsscn |
|
79 |
78
|
a1i |
|
80 |
55
|
adantr |
|
81 |
47
|
nncnd |
|
82 |
47
|
nnne0d |
|
83 |
80 81 82
|
divcan2d |
|
84 |
83
|
oveq2d |
|
85 |
59
|
ffvelrnda |
|
86 |
80 81 82
|
divcld |
|
87 |
85 81 86
|
mulassd |
|
88 |
80 85
|
mulcomd |
|
89 |
84 87 88
|
3eqtr4rd |
|
90 |
57 89
|
sylan2 |
|
91 |
|
oveq2 |
|
92 |
91
|
eleq1d |
|
93 |
92
|
elrab |
|
94 |
93
|
simprbi |
|
95 |
46 94
|
syl |
|
96 |
57 95
|
sylan2 |
|
97 |
|
eqid |
|
98 |
1 2 3 4 5 6 97
|
elqaalem2 |
|
99 |
54
|
adantr |
|
100 |
57 47
|
sylan2 |
|
101 |
|
nnre |
|
102 |
|
nnrp |
|
103 |
|
mod0 |
|
104 |
101 102 103
|
syl2an |
|
105 |
99 100 104
|
syl2anc |
|
106 |
98 105
|
mpbid |
|
107 |
96 106
|
zmulcld |
|
108 |
90 107
|
eqeltrd |
|
109 |
79 52 108
|
elplyd |
|
110 |
77 109
|
eqeltrd |
|
111 |
|
eldifsn |
|
112 |
2 111
|
sylib |
|
113 |
112
|
simprd |
|
114 |
|
oveq1 |
|
115 |
16
|
ffvelrnda |
|
116 |
54
|
nnne0d |
|
117 |
116
|
adantr |
|
118 |
115 56 117
|
divcan3d |
|
119 |
118
|
mpteq2dva |
|
120 |
|
ovexd |
|
121 |
8 120 10 18 13
|
offval2 |
|
122 |
119 121 17
|
3eqtr4d |
|
123 |
55 116
|
div0d |
|
124 |
123
|
mpteq2dv |
|
125 |
|
0cnd |
|
126 |
|
df-0p |
|
127 |
|
fconstmpt |
|
128 |
126 127
|
eqtri |
|
129 |
128
|
a1i |
|
130 |
8 125 10 129 13
|
offval2 |
|
131 |
124 130 129
|
3eqtr4d |
|
132 |
122 131
|
eqeq12d |
|
133 |
114 132
|
syl5ib |
|
134 |
133
|
necon3d |
|
135 |
113 134
|
mpd |
|
136 |
|
eldifsn |
|
137 |
110 135 136
|
sylanbrc |
|
138 |
9
|
fconst |
|
139 |
|
ffn |
|
140 |
138 139
|
mp1i |
|
141 |
16
|
ffnd |
|
142 |
|
inidm |
|
143 |
9
|
fvconst2 |
|
144 |
143
|
adantl |
|
145 |
3
|
adantr |
|
146 |
140 141 8 8 142 144 145
|
ofval |
|
147 |
1 146
|
mpdan |
|
148 |
55
|
mul01d |
|
149 |
147 148
|
eqtrd |
|
150 |
|
fveq1 |
|
151 |
150
|
eqeq1d |
|
152 |
151
|
rspcev |
|
153 |
137 149 152
|
syl2anc |
|
154 |
|
elaa |
|
155 |
1 153 154
|
sylanbrc |
|