Metamath Proof Explorer


Theorem elqs

Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypothesis elqs.1 B V
Assertion elqs B A / R x A B = x R

Proof

Step Hyp Ref Expression
1 elqs.1 B V
2 elqsg B V B A / R x A B = x R
3 1 2 ax-mp B A / R x A B = x R