Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
elqs
Next ⟩
elqsi
Metamath Proof Explorer
Ascii
Unicode
Theorem
elqs
Description:
Membership in a quotient set.
(Contributed by
NM
, 23-Jul-1995)
Ref
Expression
Hypothesis
elqs.1
⊢
B
∈
V
Assertion
elqs
⊢
B
∈
A
/
R
↔
∃
x
∈
A
B
=
x
R
Proof
Step
Hyp
Ref
Expression
1
elqs.1
⊢
B
∈
V
2
elqsg
⊢
B
∈
V
→
B
∈
A
/
R
↔
∃
x
∈
A
B
=
x
R
3
1
2
ax-mp
⊢
B
∈
A
/
R
↔
∃
x
∈
A
B
=
x
R