Metamath Proof Explorer


Theorem elqsecl

Description: Membership in a quotient set by an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion elqsecl B X B W / ˙ x W B = y | x ˙ y

Proof

Step Hyp Ref Expression
1 elqsg B X B W / ˙ x W B = x ˙
2 vex x V
3 dfec2 x V x ˙ = y | x ˙ y
4 2 3 mp1i B X x ˙ = y | x ˙ y
5 4 eqeq2d B X B = x ˙ B = y | x ˙ y
6 5 rexbidv B X x W B = x ˙ x W B = y | x ˙ y
7 1 6 bitrd B X B W / ˙ x W B = y | x ˙ y