Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
elqsg
Next ⟩
elqs
Metamath Proof Explorer
Ascii
Unicode
Theorem
elqsg
Description:
Closed form of
elqs
.
(Contributed by
Rodolfo Medina
, 12-Oct-2010)
Ref
Expression
Assertion
elqsg
⊢
B
∈
V
→
B
∈
A
/
R
↔
∃
x
∈
A
B
=
x
R
Proof
Step
Hyp
Ref
Expression
1
eqeq1
⊢
y
=
B
→
y
=
x
R
↔
B
=
x
R
2
1
rexbidv
⊢
y
=
B
→
∃
x
∈
A
y
=
x
R
↔
∃
x
∈
A
B
=
x
R
3
df-qs
⊢
A
/
R
=
y
|
∃
x
∈
A
y
=
x
R
4
2
3
elab2g
⊢
B
∈
V
→
B
∈
A
/
R
↔
∃
x
∈
A
B
=
x
R