Metamath Proof Explorer


Theorem elqsg

Description: Closed form of elqs . (Contributed by Rodolfo Medina, 12-Oct-2010)

Ref Expression
Assertion elqsg B V B A / R x A B = x R

Proof

Step Hyp Ref Expression
1 eqeq1 y = B y = x R B = x R
2 1 rexbidv y = B x A y = x R x A B = x R
3 df-qs A / R = y | x A y = x R
4 2 3 elab2g B V B A / R x A B = x R