Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
elqsi
Next ⟩
elqsecl
Metamath Proof Explorer
Ascii
Unicode
Theorem
elqsi
Description:
Membership in a quotient set.
(Contributed by
NM
, 23-Jul-1995)
Ref
Expression
Assertion
elqsi
⊢
B
∈
A
/
R
→
∃
x
∈
A
B
=
x
R
Proof
Step
Hyp
Ref
Expression
1
elqsg
⊢
B
∈
A
/
R
→
B
∈
A
/
R
↔
∃
x
∈
A
B
=
x
R
2
1
ibi
⊢
B
∈
A
/
R
→
∃
x
∈
A
B
=
x
R