Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
elqsn0
Next ⟩
ecelqsdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
elqsn0
Description:
A quotient set does not contain the empty set.
(Contributed by
NM
, 24-Aug-1995)
Ref
Expression
Assertion
elqsn0
⊢
dom
⁡
R
=
A
∧
B
∈
A
/
R
→
B
≠
∅
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
A
/
R
=
A
/
R
2
neeq1
⊢
x
R
=
B
→
x
R
≠
∅
↔
B
≠
∅
3
eleq2
⊢
dom
⁡
R
=
A
→
x
∈
dom
⁡
R
↔
x
∈
A
4
3
biimpar
⊢
dom
⁡
R
=
A
∧
x
∈
A
→
x
∈
dom
⁡
R
5
ecdmn0
⊢
x
∈
dom
⁡
R
↔
x
R
≠
∅
6
4
5
sylib
⊢
dom
⁡
R
=
A
∧
x
∈
A
→
x
R
≠
∅
7
1
2
6
ectocld
⊢
dom
⁡
R
=
A
∧
B
∈
A
/
R
→
B
≠
∅