Metamath Proof Explorer


Theorem elqsn0

Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion elqsn0 dom R = A B A / R B

Proof

Step Hyp Ref Expression
1 eqid A / R = A / R
2 neeq1 x R = B x R B
3 eleq2 dom R = A x dom R x A
4 3 biimpar dom R = A x A x dom R
5 ecdmn0 x dom R x R
6 4 5 sylib dom R = A x A x R
7 1 2 6 ectocld dom R = A B A / R B