Metamath Proof Explorer


Theorem elqtop2

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis qtoptop.1 X = J
Assertion elqtop2 J V F : X onto Y A J qTop F A Y F -1 A J

Proof

Step Hyp Ref Expression
1 qtoptop.1 X = J
2 ssid X X
3 1 elqtop J V F : X onto Y X X A J qTop F A Y F -1 A J
4 2 3 mp3an3 J V F : X onto Y A J qTop F A Y F -1 A J