Database
BASIC TOPOLOGY
Topology
Quotient maps and quotient topology
elqtop2
Next ⟩
qtopuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
elqtop2
Description:
Value of the quotient topology function.
(Contributed by
Mario Carneiro
, 9-Apr-2015)
Ref
Expression
Hypothesis
qtoptop.1
⊢
X
=
⋃
J
Assertion
elqtop2
⊢
J
∈
V
∧
F
:
X
⟶
onto
Y
→
A
∈
J
qTop
F
↔
A
⊆
Y
∧
F
-1
A
∈
J
Proof
Step
Hyp
Ref
Expression
1
qtoptop.1
⊢
X
=
⋃
J
2
ssid
⊢
X
⊆
X
3
1
elqtop
⊢
J
∈
V
∧
F
:
X
⟶
onto
Y
∧
X
⊆
X
→
A
∈
J
qTop
F
↔
A
⊆
Y
∧
F
-1
A
∈
J
4
2
3
mp3an3
⊢
J
∈
V
∧
F
:
X
⟶
onto
Y
→
A
∈
J
qTop
F
↔
A
⊆
Y
∧
F
-1
A
∈
J