Database
BASIC TOPOLOGY
Topology
Quotient maps and quotient topology
elqtop3
Next ⟩
qtoptopon
Metamath Proof Explorer
Ascii
Unicode
Theorem
elqtop3
Description:
Value of the quotient topology function.
(Contributed by
Mario Carneiro
, 9-Apr-2015)
Ref
Expression
Assertion
elqtop3
⊢
J
∈
TopOn
⁡
X
∧
F
:
X
⟶
onto
Y
→
A
∈
J
qTop
F
↔
A
⊆
Y
∧
F
-1
A
∈
J
Proof
Step
Hyp
Ref
Expression
1
toponuni
⊢
J
∈
TopOn
⁡
X
→
X
=
⋃
J
2
eqimss
⊢
X
=
⋃
J
→
X
⊆
⋃
J
3
1
2
syl
⊢
J
∈
TopOn
⁡
X
→
X
⊆
⋃
J
4
3
adantr
⊢
J
∈
TopOn
⁡
X
∧
F
:
X
⟶
onto
Y
→
X
⊆
⋃
J
5
eqid
⊢
⋃
J
=
⋃
J
6
5
elqtop
⊢
J
∈
TopOn
⁡
X
∧
F
:
X
⟶
onto
Y
∧
X
⊆
⋃
J
→
A
∈
J
qTop
F
↔
A
⊆
Y
∧
F
-1
A
∈
J
7
4
6
mpd3an3
⊢
J
∈
TopOn
⁡
X
∧
F
:
X
⟶
onto
Y
→
A
∈
J
qTop
F
↔
A
⊆
Y
∧
F
-1
A
∈
J