Metamath Proof Explorer


Theorem elqtop3

Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Assertion elqtop3 J TopOn X F : X onto Y A J qTop F A Y F -1 A J

Proof

Step Hyp Ref Expression
1 toponuni J TopOn X X = J
2 eqimss X = J X J
3 1 2 syl J TopOn X X J
4 3 adantr J TopOn X F : X onto Y X J
5 eqid J = J
6 5 elqtop J TopOn X F : X onto Y X J A J qTop F A Y F -1 A J
7 4 6 mpd3an3 J TopOn X F : X onto Y A J qTop F A Y F -1 A J