Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
elrabd
Metamath Proof Explorer
Description: Membership in a restricted class abstraction, using implicit
substitution. Deduction version of elrab . (Contributed by Glauco
Siliprandi , 23-Oct-2021)
Ref
Expression
Hypotheses
elrabd.1
⊢ x = A → ψ ↔ χ
elrabd.2
⊢ φ → A ∈ B
elrabd.3
⊢ φ → χ
Assertion
elrabd
⊢ φ → A ∈ x ∈ B | ψ
Proof
Step
Hyp
Ref
Expression
1
elrabd.1
⊢ x = A → ψ ↔ χ
2
elrabd.2
⊢ φ → A ∈ B
3
elrabd.3
⊢ φ → χ
4
1
elrab
⊢ A ∈ x ∈ B | ψ ↔ A ∈ B ∧ χ
5
2 3 4
sylanbrc
⊢ φ → A ∈ x ∈ B | ψ