Metamath Proof Explorer


Theorem elrabd

Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elrabd.1 x = A ψ χ
elrabd.2 φ A B
elrabd.3 φ χ
Assertion elrabd φ A x B | ψ

Proof

Step Hyp Ref Expression
1 elrabd.1 x = A ψ χ
2 elrabd.2 φ A B
3 elrabd.3 φ χ
4 1 elrab A x B | ψ A B χ
5 2 3 4 sylanbrc φ A x B | ψ