Metamath Proof Explorer


Theorem elrabsf

Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf has implicit substitution). The hypothesis specifies that x must not be a free variable in B . (Contributed by NM, 30-Sep-2003) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis elrabsf.1 _ x B
Assertion elrabsf A x B | φ A B [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 elrabsf.1 _ x B
2 dfsbcq y = A [˙y / x]˙ φ [˙A / x]˙ φ
3 nfcv _ y B
4 nfv y φ
5 nfsbc1v x [˙y / x]˙ φ
6 sbceq1a x = y φ [˙y / x]˙ φ
7 1 3 4 5 6 cbvrabw x B | φ = y B | [˙y / x]˙ φ
8 2 7 elrab2 A x B | φ A B [˙A / x]˙ φ