Metamath Proof Explorer


Theorem elreal

Description: Membership in class of real numbers. (Contributed by NM, 31-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion elreal A x 𝑹 x 0 𝑹 = A

Proof

Step Hyp Ref Expression
1 df-r = 𝑹 × 0 𝑹
2 1 eleq2i A A 𝑹 × 0 𝑹
3 elxp2 A 𝑹 × 0 𝑹 x 𝑹 y 0 𝑹 A = x y
4 0r 0 𝑹 𝑹
5 4 elexi 0 𝑹 V
6 opeq2 y = 0 𝑹 x y = x 0 𝑹
7 6 eqeq2d y = 0 𝑹 A = x y A = x 0 𝑹
8 5 7 rexsn y 0 𝑹 A = x y A = x 0 𝑹
9 eqcom A = x 0 𝑹 x 0 𝑹 = A
10 8 9 bitri y 0 𝑹 A = x y x 0 𝑹 = A
11 10 rexbii x 𝑹 y 0 𝑹 A = x y x 𝑹 x 0 𝑹 = A
12 3 11 bitri A 𝑹 × 0 𝑹 x 𝑹 x 0 𝑹 = A
13 2 12 bitri A x 𝑹 x 0 𝑹 = A