Metamath Proof Explorer


Theorem elrel

Description: A member of a relation is an ordered pair. (Contributed by NM, 17-Sep-2006)

Ref Expression
Assertion elrel Rel R A R x y A = x y

Proof

Step Hyp Ref Expression
1 df-rel Rel R R V × V
2 1 biimpi Rel R R V × V
3 2 sselda Rel R A R A V × V
4 elvv A V × V x y A = x y
5 3 4 sylib Rel R A R x y A = x y