Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elrel
Next ⟩
rel0
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrel
Description:
A member of a relation is an ordered pair.
(Contributed by
NM
, 17-Sep-2006)
Ref
Expression
Assertion
elrel
⊢
Rel
⁡
R
∧
A
∈
R
→
∃
x
∃
y
A
=
x
y
Proof
Step
Hyp
Ref
Expression
1
df-rel
⊢
Rel
⁡
R
↔
R
⊆
V
×
V
2
1
biimpi
⊢
Rel
⁡
R
→
R
⊆
V
×
V
3
2
sselda
⊢
Rel
⁡
R
∧
A
∈
R
→
A
∈
V
×
V
4
elvv
⊢
A
∈
V
×
V
↔
∃
x
∃
y
A
=
x
y
5
3
4
sylib
⊢
Rel
⁡
R
∧
A
∈
R
→
∃
x
∃
y
A
=
x
y