Metamath Proof Explorer


Theorem elreldm

Description: The first member of an ordered pair in a relation belongs to the domain of the relation (see op1stb ). (Contributed by NM, 28-Jul-2004)

Ref Expression
Assertion elreldm Rel A B A B dom A

Proof

Step Hyp Ref Expression
1 df-rel Rel A A V × V
2 ssel A V × V B A B V × V
3 1 2 sylbi Rel A B A B V × V
4 elvv B V × V x y B = x y
5 3 4 syl6ib Rel A B A x y B = x y
6 eleq1 B = x y B A x y A
7 vex x V
8 vex y V
9 7 8 opeldm x y A x dom A
10 6 9 syl6bi B = x y B A x dom A
11 inteq B = x y B = x y
12 11 inteqd B = x y B = x y
13 7 8 op1stb x y = x
14 12 13 eqtrdi B = x y B = x
15 14 eleq1d B = x y B dom A x dom A
16 10 15 sylibrd B = x y B A B dom A
17 16 exlimivv x y B = x y B A B dom A
18 5 17 syli Rel A B A B dom A
19 18 imp Rel A B A B dom A