Metamath Proof Explorer


Theorem elrelimasn

Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion elrelimasn Rel R B R A A R B

Proof

Step Hyp Ref Expression
1 relimasn Rel R R A = x | A R x
2 1 eleq2d Rel R B R A B x | A R x
3 brrelex2 Rel R A R B B V
4 3 ex Rel R A R B B V
5 breq2 x = B A R x A R B
6 5 elab3g A R B B V B x | A R x A R B
7 4 6 syl Rel R B x | A R x A R B
8 2 7 bitrd Rel R B R A A R B