Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elrelimasn
Next ⟩
elimasng1
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrelimasn
Description:
Elementhood in the image of a singleton.
(Contributed by
Mario Carneiro
, 3-Nov-2015)
Ref
Expression
Assertion
elrelimasn
⊢
Rel
⁡
R
→
B
∈
R
A
↔
A
R
B
Proof
Step
Hyp
Ref
Expression
1
relimasn
⊢
Rel
⁡
R
→
R
A
=
x
|
A
R
x
2
1
eleq2d
⊢
Rel
⁡
R
→
B
∈
R
A
↔
B
∈
x
|
A
R
x
3
brrelex2
⊢
Rel
⁡
R
∧
A
R
B
→
B
∈
V
4
3
ex
⊢
Rel
⁡
R
→
A
R
B
→
B
∈
V
5
breq2
⊢
x
=
B
→
A
R
x
↔
A
R
B
6
5
elab3g
⊢
A
R
B
→
B
∈
V
→
B
∈
x
|
A
R
x
↔
A
R
B
7
4
6
syl
⊢
Rel
⁡
R
→
B
∈
x
|
A
R
x
↔
A
R
B
8
2
7
bitrd
⊢
Rel
⁡
R
→
B
∈
R
A
↔
A
R
B