Metamath Proof Explorer


Theorem elres

Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011) (Proof shortened by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elres A B C x C y A = x y x y B

Proof

Step Hyp Ref Expression
1 df-res B C = B C × V
2 1 eleq2i A B C A B C × V
3 elinxp A B C × V x C y V A = x y x y B
4 rexv y V A = x y x y B y A = x y x y B
5 4 rexbii x C y V A = x y x y B x C y A = x y x y B
6 2 3 5 3bitri A B C x C y A = x y x y B