Metamath Proof Explorer


Theorem elrfirn

Description: Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion elrfirn B V F : I 𝒫 B A fi B ran F v 𝒫 I Fin A = B y v F y

Proof

Step Hyp Ref Expression
1 frn F : I 𝒫 B ran F 𝒫 B
2 elrfi B V ran F 𝒫 B A fi B ran F w 𝒫 ran F Fin A = B w
3 1 2 sylan2 B V F : I 𝒫 B A fi B ran F w 𝒫 ran F Fin A = B w
4 imassrn F v ran F
5 pwexg B V 𝒫 B V
6 ssexg ran F 𝒫 B 𝒫 B V ran F V
7 1 5 6 syl2anr B V F : I 𝒫 B ran F V
8 elpw2g ran F V F v 𝒫 ran F F v ran F
9 7 8 syl B V F : I 𝒫 B F v 𝒫 ran F F v ran F
10 4 9 mpbiri B V F : I 𝒫 B F v 𝒫 ran F
11 10 adantr B V F : I 𝒫 B v 𝒫 I Fin F v 𝒫 ran F
12 ffun F : I 𝒫 B Fun F
13 12 ad2antlr B V F : I 𝒫 B v 𝒫 I Fin Fun F
14 inss2 𝒫 I Fin Fin
15 14 sseli v 𝒫 I Fin v Fin
16 15 adantl B V F : I 𝒫 B v 𝒫 I Fin v Fin
17 imafi Fun F v Fin F v Fin
18 13 16 17 syl2anc B V F : I 𝒫 B v 𝒫 I Fin F v Fin
19 11 18 elind B V F : I 𝒫 B v 𝒫 I Fin F v 𝒫 ran F Fin
20 ffn F : I 𝒫 B F Fn I
21 20 ad2antlr B V F : I 𝒫 B w 𝒫 ran F Fin F Fn I
22 inss1 𝒫 ran F Fin 𝒫 ran F
23 22 sseli w 𝒫 ran F Fin w 𝒫 ran F
24 23 elpwid w 𝒫 ran F Fin w ran F
25 24 adantl B V F : I 𝒫 B w 𝒫 ran F Fin w ran F
26 inss2 𝒫 ran F Fin Fin
27 26 sseli w 𝒫 ran F Fin w Fin
28 27 adantl B V F : I 𝒫 B w 𝒫 ran F Fin w Fin
29 fipreima F Fn I w ran F w Fin v 𝒫 I Fin F v = w
30 21 25 28 29 syl3anc B V F : I 𝒫 B w 𝒫 ran F Fin v 𝒫 I Fin F v = w
31 eqcom F v = w w = F v
32 31 rexbii v 𝒫 I Fin F v = w v 𝒫 I Fin w = F v
33 30 32 sylib B V F : I 𝒫 B w 𝒫 ran F Fin v 𝒫 I Fin w = F v
34 inteq w = F v w = F v
35 34 ineq2d w = F v B w = B F v
36 35 eqeq2d w = F v A = B w A = B F v
37 36 adantl B V F : I 𝒫 B w = F v A = B w A = B F v
38 19 33 37 rexxfrd B V F : I 𝒫 B w 𝒫 ran F Fin A = B w v 𝒫 I Fin A = B F v
39 20 ad2antlr B V F : I 𝒫 B v 𝒫 I Fin F Fn I
40 inss1 𝒫 I Fin 𝒫 I
41 40 sseli v 𝒫 I Fin v 𝒫 I
42 41 elpwid v 𝒫 I Fin v I
43 42 adantl B V F : I 𝒫 B v 𝒫 I Fin v I
44 imaiinfv F Fn I v I y v F y = F v
45 39 43 44 syl2anc B V F : I 𝒫 B v 𝒫 I Fin y v F y = F v
46 45 eqcomd B V F : I 𝒫 B v 𝒫 I Fin F v = y v F y
47 46 ineq2d B V F : I 𝒫 B v 𝒫 I Fin B F v = B y v F y
48 47 eqeq2d B V F : I 𝒫 B v 𝒫 I Fin A = B F v A = B y v F y
49 48 rexbidva B V F : I 𝒫 B v 𝒫 I Fin A = B F v v 𝒫 I Fin A = B y v F y
50 3 38 49 3bitrd B V F : I 𝒫 B A fi B ran F v 𝒫 I Fin A = B y v F y