Metamath Proof Explorer


Theorem elrlocbasi

Description: Membership in the basis of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypothesis elrlocbasi.x φ X B × S / ˙
Assertion elrlocbasi φ a B b S X = a b ˙

Proof

Step Hyp Ref Expression
1 elrlocbasi.x φ X B × S / ˙
2 simp-4r φ z B × S X = z ˙ a B b S z = a b X = z ˙
3 simpr φ z B × S X = z ˙ a B b S z = a b z = a b
4 3 eceq1d φ z B × S X = z ˙ a B b S z = a b z ˙ = a b ˙
5 2 4 eqtrd φ z B × S X = z ˙ a B b S z = a b X = a b ˙
6 elxp2 z B × S a B b S z = a b
7 6 biimpi z B × S a B b S z = a b
8 7 ad2antlr φ z B × S X = z ˙ a B b S z = a b
9 5 8 reximddv2 φ z B × S X = z ˙ a B b S X = a b ˙
10 elqsi X B × S / ˙ z B × S X = z ˙
11 1 10 syl φ z B × S X = z ˙
12 9 11 r19.29a φ a B b S X = a b ˙