Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elrn
Next ⟩
ssrelrn
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrn
Description:
Membership in a range.
(Contributed by
NM
, 2-Apr-2004)
Ref
Expression
Hypothesis
elrn.1
⊢
A
∈
V
Assertion
elrn
⊢
A
∈
ran
⁡
B
↔
∃
x
x
B
A
Proof
Step
Hyp
Ref
Expression
1
elrn.1
⊢
A
∈
V
2
elrng
⊢
A
∈
V
→
A
∈
ran
⁡
B
↔
∃
x
x
B
A
3
1
2
ax-mp
⊢
A
∈
ran
⁡
B
↔
∃
x
x
B
A