Metamath Proof Explorer


Theorem elrn2g

Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion elrn2g A V A ran B x x A B

Proof

Step Hyp Ref Expression
1 opeq2 y = A x y = x A
2 1 eleq1d y = A x y B x A B
3 2 exbidv y = A x x y B x x A B
4 dfrn3 ran B = y | x x y B
5 3 4 elab2g A V A ran B x x A B