Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elrn2g
Next ⟩
elrng
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrn2g
Description:
Membership in a range.
(Contributed by
Scott Fenton
, 2-Feb-2011)
Ref
Expression
Assertion
elrn2g
⊢
A
∈
V
→
A
∈
ran
⁡
B
↔
∃
x
x
A
∈
B
Proof
Step
Hyp
Ref
Expression
1
opeq2
⊢
y
=
A
→
x
y
=
x
A
2
1
eleq1d
⊢
y
=
A
→
x
y
∈
B
↔
x
A
∈
B
3
2
exbidv
⊢
y
=
A
→
∃
x
x
y
∈
B
↔
∃
x
x
A
∈
B
4
dfrn3
⊢
ran
⁡
B
=
y
|
∃
x
x
y
∈
B
5
3
4
elab2g
⊢
A
∈
V
→
A
∈
ran
⁡
B
↔
∃
x
x
A
∈
B