Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
elrng
Next ⟩
elrn2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrng
Description:
Membership in a range.
(Contributed by
Scott Fenton
, 2-Feb-2011)
Ref
Expression
Assertion
elrng
⊢
A
∈
V
→
A
∈
ran
⁡
B
↔
∃
x
x
B
A
Proof
Step
Hyp
Ref
Expression
1
elrn2g
⊢
A
∈
V
→
A
∈
ran
⁡
B
↔
∃
x
x
A
∈
B
2
df-br
⊢
x
B
A
↔
x
A
∈
B
3
2
exbii
⊢
∃
x
x
B
A
↔
∃
x
x
A
∈
B
4
1
3
bitr4di
⊢
A
∈
V
→
A
∈
ran
⁡
B
↔
∃
x
x
B
A