Metamath Proof Explorer


Theorem elrnmpo

Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses rngop.1 F = x A , y B C
elrnmpo.1 C V
Assertion elrnmpo D ran F x A y B D = C

Proof

Step Hyp Ref Expression
1 rngop.1 F = x A , y B C
2 elrnmpo.1 C V
3 1 rnmpo ran F = z | x A y B z = C
4 3 eleq2i D ran F D z | x A y B z = C
5 eleq1 D = C D V C V
6 2 5 mpbiri D = C D V
7 6 rexlimivw y B D = C D V
8 7 rexlimivw x A y B D = C D V
9 eqeq1 z = D z = C D = C
10 9 2rexbidv z = D x A y B z = C x A y B D = C
11 8 10 elab3 D z | x A y B z = C x A y B D = C
12 4 11 bitri D ran F x A y B D = C