Metamath Proof Explorer


Theorem elrnmpoid

Description: Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis elrnmpoid.1 F = x A , y B C
Assertion elrnmpoid x A y B x A y B C V x F y ran F

Proof

Step Hyp Ref Expression
1 elrnmpoid.1 F = x A , y B C
2 1 fnmpo x A y B C V F Fn A × B
3 2 3ad2ant3 x A y B x A y B C V F Fn A × B
4 simp1 x A y B x A y B C V x A
5 simp2 x A y B x A y B C V y B
6 fnovrn F Fn A × B x A y B x F y ran F
7 3 4 5 6 syl3anc x A y B x A y B C V x F y ran F