Metamath Proof Explorer


Theorem elrnmpt1d

Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elrnmpt1d.1 F = x A B
elrnmpt1d.2 φ x A
elrnmpt1d.3 φ B V
Assertion elrnmpt1d φ B ran F

Proof

Step Hyp Ref Expression
1 elrnmpt1d.1 F = x A B
2 elrnmpt1d.2 φ x A
3 elrnmpt1d.3 φ B V
4 1 elrnmpt1 x A B V B ran F
5 2 3 4 syl2anc φ B ran F