Metamath Proof Explorer


Theorem elrnmptdv

Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses elrnmptdv.1 F = x A B
elrnmptdv.2 φ C A
elrnmptdv.3 φ D V
elrnmptdv.4 φ x = C D = B
Assertion elrnmptdv φ D ran F

Proof

Step Hyp Ref Expression
1 elrnmptdv.1 F = x A B
2 elrnmptdv.2 φ C A
3 elrnmptdv.3 φ D V
4 elrnmptdv.4 φ x = C D = B
5 4 2 rspcime φ x A D = B
6 1 elrnmpt D V D ran F x A D = B
7 3 6 syl φ D ran F x A D = B
8 5 7 mpbird φ D ran F