Metamath Proof Explorer


Theorem elrnres

Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018)

Ref Expression
Assertion elrnres B V B ran R A x A x R B

Proof

Step Hyp Ref Expression
1 elrng B V B ran R A x x R A B
2 brres B V x R A B x A x R B
3 2 exbidv B V x x R A B x x A x R B
4 1 3 bitrd B V B ran R A x x A x R B
5 df-rex x A x R B x x A x R B
6 4 5 bitr4di B V B ran R A x A x R B