Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
elrnres
Next ⟩
eldmressnALTV
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrnres
Description:
Element of the range of a restriction.
(Contributed by
Peter Mazsa
, 26-Dec-2018)
Ref
Expression
Assertion
elrnres
⊢
B
∈
V
→
B
∈
ran
⁡
R
↾
A
↔
∃
x
∈
A
x
R
B
Proof
Step
Hyp
Ref
Expression
1
elrng
⊢
B
∈
V
→
B
∈
ran
⁡
R
↾
A
↔
∃
x
x
R
↾
A
B
2
brres
⊢
B
∈
V
→
x
R
↾
A
B
↔
x
∈
A
∧
x
R
B
3
2
exbidv
⊢
B
∈
V
→
∃
x
x
R
↾
A
B
↔
∃
x
x
∈
A
∧
x
R
B
4
1
3
bitrd
⊢
B
∈
V
→
B
∈
ran
⁡
R
↾
A
↔
∃
x
x
∈
A
∧
x
R
B
5
df-rex
⊢
∃
x
∈
A
x
R
B
↔
∃
x
x
∈
A
∧
x
R
B
6
4
5
bitr4di
⊢
B
∈
V
→
B
∈
ran
⁡
R
↾
A
↔
∃
x
∈
A
x
R
B