Metamath Proof Explorer


Theorem elrnrexdm

Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion elrnrexdm Fun F Y ran F x dom F Y = F x

Proof

Step Hyp Ref Expression
1 eqidd Y ran F Y = Y
2 1 ancli Y ran F Y ran F Y = Y
3 2 adantl Fun F Y ran F Y ran F Y = Y
4 eqeq2 y = Y Y = y Y = Y
5 4 rspcev Y ran F Y = Y y ran F Y = y
6 3 5 syl Fun F Y ran F y ran F Y = y
7 6 ex Fun F Y ran F y ran F Y = y
8 funfn Fun F F Fn dom F
9 eqeq2 y = F x Y = y Y = F x
10 9 rexrn F Fn dom F y ran F Y = y x dom F Y = F x
11 8 10 sylbi Fun F y ran F Y = y x dom F Y = F x
12 7 11 sylibd Fun F Y ran F x dom F Y = F x