Metamath Proof Explorer


Theorem elrnrexdmb

Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 17-Dec-2017)

Ref Expression
Assertion elrnrexdmb Fun F Y ran F x dom F Y = F x

Proof

Step Hyp Ref Expression
1 funfn Fun F F Fn dom F
2 fvelrnb F Fn dom F Y ran F x dom F F x = Y
3 1 2 sylbi Fun F Y ran F x dom F F x = Y
4 eqcom Y = F x F x = Y
5 4 rexbii x dom F Y = F x x dom F F x = Y
6 3 5 bitr4di Fun F Y ran F x dom F Y = F x