Database
BASIC TOPOLOGY
Uniform Structures and Spaces
Uniform structures
elrnust
Next ⟩
ustbas2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrnust
Description:
First direction for
ustbas
.
(Contributed by
Thierry Arnoux
, 16-Nov-2017)
Ref
Expression
Assertion
elrnust
⊢
U
∈
UnifOn
⁡
X
→
U
∈
⋃
ran
⁡
UnifOn
Proof
Step
Hyp
Ref
Expression
1
elfvdm
⊢
U
∈
UnifOn
⁡
X
→
X
∈
dom
⁡
UnifOn
2
fveq2
⊢
x
=
X
→
UnifOn
⁡
x
=
UnifOn
⁡
X
3
2
eleq2d
⊢
x
=
X
→
U
∈
UnifOn
⁡
x
↔
U
∈
UnifOn
⁡
X
4
3
rspcev
⊢
X
∈
dom
⁡
UnifOn
∧
U
∈
UnifOn
⁡
X
→
∃
x
∈
dom
⁡
UnifOn
U
∈
UnifOn
⁡
x
5
1
4
mpancom
⊢
U
∈
UnifOn
⁡
X
→
∃
x
∈
dom
⁡
UnifOn
U
∈
UnifOn
⁡
x
6
ustfn
⊢
UnifOn
Fn
V
7
fnfun
⊢
UnifOn
Fn
V
→
Fun
⁡
UnifOn
8
elunirn
⊢
Fun
⁡
UnifOn
→
U
∈
⋃
ran
⁡
UnifOn
↔
∃
x
∈
dom
⁡
UnifOn
U
∈
UnifOn
⁡
x
9
6
7
8
mp2b
⊢
U
∈
⋃
ran
⁡
UnifOn
↔
∃
x
∈
dom
⁡
UnifOn
U
∈
UnifOn
⁡
x
10
5
9
sylibr
⊢
U
∈
UnifOn
⁡
X
→
U
∈
⋃
ran
⁡
UnifOn