Metamath Proof Explorer


Theorem elrnust

Description: First direction for ustbas . (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion elrnust U UnifOn X U ran UnifOn

Proof

Step Hyp Ref Expression
1 elfvdm U UnifOn X X dom UnifOn
2 fveq2 x = X UnifOn x = UnifOn X
3 2 eleq2d x = X U UnifOn x U UnifOn X
4 3 rspcev X dom UnifOn U UnifOn X x dom UnifOn U UnifOn x
5 1 4 mpancom U UnifOn X x dom UnifOn U UnifOn x
6 ustfn UnifOn Fn V
7 fnfun UnifOn Fn V Fun UnifOn
8 elunirn Fun UnifOn U ran UnifOn x dom UnifOn U UnifOn x
9 6 7 8 mp2b U ran UnifOn x dom UnifOn U UnifOn x
10 5 9 sylibr U UnifOn X U ran UnifOn