Metamath Proof Explorer


Theorem elrpd

Description: Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses elrpd.1 φ A
elrpd.2 φ 0 < A
Assertion elrpd φ A +

Proof

Step Hyp Ref Expression
1 elrpd.1 φ A
2 elrpd.2 φ 0 < A
3 elrp A + A 0 < A
4 1 2 3 sylanbrc φ A +