Metamath Proof Explorer


Theorem elrpii

Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008)

Ref Expression
Hypotheses elrpi.1 A
elrpi.2 0 < A
Assertion elrpii A +

Proof

Step Hyp Ref Expression
1 elrpi.1 A
2 elrpi.2 0 < A
3 elrp A + A 0 < A
4 1 2 3 mpbir2an A +