Metamath Proof Explorer


Theorem elsb1

Description: Substitution for the first argument of the non-logical predicate in an atomic formula. See elsb2 for substitution for the second argument. (Contributed by NM, 7-Nov-2006) (Proof shortened by Andrew Salmon, 14-Jun-2011) Reduce axiom usage. (Revised by Wolf Lammen, 24-Jul-2023)

Ref Expression
Assertion elsb1 y x x z y z

Proof

Step Hyp Ref Expression
1 elequ1 x = w x z w z
2 elequ1 w = y w z y z
3 1 2 sbievw2 y x x z y z