Metamath Proof Explorer


Theorem elsb2

Description: Substitution for the second argument of the non-logical predicate in an atomic formula. See elsb1 for substitution for the first argument. (Contributed by Rodolfo Medina, 3-Apr-2010) (Proof shortened by Andrew Salmon, 14-Jun-2011) Reduce axiom usage. (Revised by Wolf Lammen, 24-Jul-2023)

Ref Expression
Assertion elsb2 y x z x z y

Proof

Step Hyp Ref Expression
1 elequ2 x = w z x z w
2 elequ2 w = y z w z y
3 1 2 sbievw2 y x z x z y