Metamath Proof Explorer


Theorem elsetchom

Description: A morphism of sets is a function. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C = SetCat U
setcbas.u φ U V
setchomfval.h H = Hom C
setchom.x φ X U
setchom.y φ Y U
Assertion elsetchom φ F X H Y F : X Y

Proof

Step Hyp Ref Expression
1 setcbas.c C = SetCat U
2 setcbas.u φ U V
3 setchomfval.h H = Hom C
4 setchom.x φ X U
5 setchom.y φ Y U
6 1 2 3 4 5 setchom φ X H Y = Y X
7 6 eleq2d φ F X H Y F Y X
8 5 4 elmapd φ F Y X F : X Y
9 7 8 bitrd φ F X H Y F : X Y