Metamath Proof Explorer


Theorem elspansn

Description: Membership in the span of a singleton. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn A B span A x B = x A

Proof

Step Hyp Ref Expression
1 sneq A = if A A 0 A = if A A 0
2 1 fveq2d A = if A A 0 span A = span if A A 0
3 2 eleq2d A = if A A 0 B span A B span if A A 0
4 oveq2 A = if A A 0 x A = x if A A 0
5 4 eqeq2d A = if A A 0 B = x A B = x if A A 0
6 5 rexbidv A = if A A 0 x B = x A x B = x if A A 0
7 3 6 bibi12d A = if A A 0 B span A x B = x A B span if A A 0 x B = x if A A 0
8 ifhvhv0 if A A 0
9 8 elspansni B span if A A 0 x B = x if A A 0
10 7 9 dedth A B span A x B = x A