Metamath Proof Explorer


Theorem elspansn2

Description: Membership in the span of a singleton. All members are collinear with the generating vector. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn2 A B B 0 A span B A = A ih B B ih B B

Proof

Step Hyp Ref Expression
1 spansn B span B = B
2 1 eleq2d B A span B A B
3 2 3ad2ant2 A B B 0 A span B A B
4 eleq1 A = if A A 0 A B if A A 0 B
5 id A = if A A 0 A = if A A 0
6 oveq1 A = if A A 0 A ih B = if A A 0 ih B
7 6 oveq1d A = if A A 0 A ih B B ih B = if A A 0 ih B B ih B
8 7 oveq1d A = if A A 0 A ih B B ih B B = if A A 0 ih B B ih B B
9 5 8 eqeq12d A = if A A 0 A = A ih B B ih B B if A A 0 = if A A 0 ih B B ih B B
10 4 9 bibi12d A = if A A 0 A B A = A ih B B ih B B if A A 0 B if A A 0 = if A A 0 ih B B ih B B
11 10 imbi2d A = if A A 0 B 0 A B A = A ih B B ih B B B 0 if A A 0 B if A A 0 = if A A 0 ih B B ih B B
12 neeq1 B = if B B 0 B 0 if B B 0 0
13 sneq B = if B B 0 B = if B B 0
14 13 fveq2d B = if B B 0 B = if B B 0
15 14 fveq2d B = if B B 0 B = if B B 0
16 15 eleq2d B = if B B 0 if A A 0 B if A A 0 if B B 0
17 oveq2 B = if B B 0 if A A 0 ih B = if A A 0 ih if B B 0
18 oveq1 B = if B B 0 B ih B = if B B 0 ih B
19 oveq2 B = if B B 0 if B B 0 ih B = if B B 0 ih if B B 0
20 18 19 eqtrd B = if B B 0 B ih B = if B B 0 ih if B B 0
21 17 20 oveq12d B = if B B 0 if A A 0 ih B B ih B = if A A 0 ih if B B 0 if B B 0 ih if B B 0
22 id B = if B B 0 B = if B B 0
23 21 22 oveq12d B = if B B 0 if A A 0 ih B B ih B B = if A A 0 ih if B B 0 if B B 0 ih if B B 0 if B B 0
24 23 eqeq2d B = if B B 0 if A A 0 = if A A 0 ih B B ih B B if A A 0 = if A A 0 ih if B B 0 if B B 0 ih if B B 0 if B B 0
25 16 24 bibi12d B = if B B 0 if A A 0 B if A A 0 = if A A 0 ih B B ih B B if A A 0 if B B 0 if A A 0 = if A A 0 ih if B B 0 if B B 0 ih if B B 0 if B B 0
26 12 25 imbi12d B = if B B 0 B 0 if A A 0 B if A A 0 = if A A 0 ih B B ih B B if B B 0 0 if A A 0 if B B 0 if A A 0 = if A A 0 ih if B B 0 if B B 0 ih if B B 0 if B B 0
27 ifhvhv0 if A A 0
28 ifhvhv0 if B B 0
29 27 28 h1de2bi if B B 0 0 if A A 0 if B B 0 if A A 0 = if A A 0 ih if B B 0 if B B 0 ih if B B 0 if B B 0
30 11 26 29 dedth2h A B B 0 A B A = A ih B B ih B B
31 30 3impia A B B 0 A B A = A ih B B ih B B
32 3 31 bitrd A B B 0 A span B A = A ih B B ih B B