Metamath Proof Explorer


Theorem elspansn4

Description: A span membership condition implying two vectors belong to the same subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn4 A S B C span B C 0 B A C A

Proof

Step Hyp Ref Expression
1 elspansn3 A S B A C span B C A
2 1 3exp A S B A C span B C A
3 2 com23 A S C span B B A C A
4 3 imp A S C span B B A C A
5 4 ad2ant2r A S B C span B C 0 B A C A
6 spansnid B B span B
7 6 ad2antrr B C 0 C span B B span B
8 spansneleq B C 0 C span B span C = span B
9 8 imp B C 0 C span B span C = span B
10 7 9 eleqtrrd B C 0 C span B B span C
11 elspansn3 A S C A B span C B A
12 11 3expia A S C A B span C B A
13 10 12 syl5 A S C A B C 0 C span B B A
14 13 exp4b A S C A B C 0 C span B B A
15 14 com24 A S C span B B C 0 C A B A
16 15 exp4a A S C span B B C 0 C A B A
17 16 com23 A S B C span B C 0 C A B A
18 17 imp43 A S B C span B C 0 C A B A
19 5 18 impbid A S B C span B C 0 B A C A