Metamath Proof Explorer


Theorem elssabg

Description: Membership in a class abstraction involving a subset. Unlike elabg , A does not have to be a set. (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elssabg.1 x = A φ ψ
Assertion elssabg B V A x | x B φ A B ψ

Proof

Step Hyp Ref Expression
1 elssabg.1 x = A φ ψ
2 ssexg A B B V A V
3 2 expcom B V A B A V
4 3 adantrd B V A B ψ A V
5 sseq1 x = A x B A B
6 5 1 anbi12d x = A x B φ A B ψ
7 6 elab3g A B ψ A V A x | x B φ A B ψ
8 4 7 syl B V A x | x B φ A B ψ