Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
elsuc2
Next ⟩
nfsuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
elsuc2
Description:
Membership in a successor.
(Contributed by
NM
, 15-Sep-2003)
Ref
Expression
Hypothesis
elsuc.1
⊢
A
∈
V
Assertion
elsuc2
⊢
B
∈
suc
⁡
A
↔
B
∈
A
∨
B
=
A
Proof
Step
Hyp
Ref
Expression
1
elsuc.1
⊢
A
∈
V
2
elsuc2g
⊢
A
∈
V
→
B
∈
suc
⁡
A
↔
B
∈
A
∨
B
=
A
3
1
2
ax-mp
⊢
B
∈
suc
⁡
A
↔
B
∈
A
∨
B
=
A