Metamath Proof Explorer


Theorem elsuci

Description: Membership in a successor. This one-way implication does not require that either A or B be sets. (Contributed by NM, 6-Jun-1994)

Ref Expression
Assertion elsuci A suc B A B A = B

Proof

Step Hyp Ref Expression
1 df-suc suc B = B B
2 1 eleq2i A suc B A B B
3 elun A B B A B A B
4 2 3 bitri A suc B A B A B
5 elsni A B A = B
6 5 orim2i A B A B A B A = B
7 4 6 sylbi A suc B A B A = B