Metamath Proof Explorer


Theorem elsuppfng

Description: An element of the support of a function with a given domain. This version of elsuppfn assumes F is a set rather than its domain X , avoiding ax-rep . (Contributed by SN, 5-Aug-2024)

Ref Expression
Assertion elsuppfng F Fn X F V Z W S supp Z F S X F S Z

Proof

Step Hyp Ref Expression
1 suppvalfng F Fn X F V Z W F supp Z = i X | F i Z
2 1 eleq2d F Fn X F V Z W S supp Z F S i X | F i Z
3 fveq2 i = S F i = F S
4 3 neeq1d i = S F i Z F S Z
5 4 elrab S i X | F i Z S X F S Z
6 2 5 bitrdi F Fn X F V Z W S supp Z F S X F S Z