Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The symmetric difference of two classes
elsymdif
Next ⟩
dfsymdif4
Metamath Proof Explorer
Ascii
Unicode
Theorem
elsymdif
Description:
Membership in a symmetric difference.
(Contributed by
Scott Fenton
, 31-Mar-2012)
Ref
Expression
Assertion
elsymdif
⊢
A
∈
B
∆
C
↔
¬
A
∈
B
↔
A
∈
C
Proof
Step
Hyp
Ref
Expression
1
elun
⊢
A
∈
B
∖
C
∪
C
∖
B
↔
A
∈
B
∖
C
∨
A
∈
C
∖
B
2
eldif
⊢
A
∈
B
∖
C
↔
A
∈
B
∧
¬
A
∈
C
3
eldif
⊢
A
∈
C
∖
B
↔
A
∈
C
∧
¬
A
∈
B
4
2
3
orbi12i
⊢
A
∈
B
∖
C
∨
A
∈
C
∖
B
↔
A
∈
B
∧
¬
A
∈
C
∨
A
∈
C
∧
¬
A
∈
B
5
1
4
bitri
⊢
A
∈
B
∖
C
∪
C
∖
B
↔
A
∈
B
∧
¬
A
∈
C
∨
A
∈
C
∧
¬
A
∈
B
6
df-symdif
⊢
B
∆
C
=
B
∖
C
∪
C
∖
B
7
6
eleq2i
⊢
A
∈
B
∆
C
↔
A
∈
B
∖
C
∪
C
∖
B
8
xor
⊢
¬
A
∈
B
↔
A
∈
C
↔
A
∈
B
∧
¬
A
∈
C
∨
A
∈
C
∧
¬
A
∈
B
9
5
7
8
3bitr4i
⊢
A
∈
B
∆
C
↔
¬
A
∈
B
↔
A
∈
C