Metamath Proof Explorer


Theorem elsymdif

Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion elsymdif A B C ¬ A B A C

Proof

Step Hyp Ref Expression
1 elun A B C C B A B C A C B
2 eldif A B C A B ¬ A C
3 eldif A C B A C ¬ A B
4 2 3 orbi12i A B C A C B A B ¬ A C A C ¬ A B
5 1 4 bitri A B C C B A B ¬ A C A C ¬ A B
6 df-symdif B C = B C C B
7 6 eleq2i A B C A B C C B
8 xor ¬ A B A C A B ¬ A C A C ¬ A B
9 5 7 8 3bitr4i A B C ¬ A B A C