Metamath Proof Explorer


Theorem elsymdif

Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion elsymdif ABC¬ABAC

Proof

Step Hyp Ref Expression
1 elun ABCCBABCACB
2 eldif ABCAB¬AC
3 eldif ACBAC¬AB
4 2 3 orbi12i ABCACBAB¬ACAC¬AB
5 1 4 bitri ABCCBAB¬ACAC¬AB
6 df-symdif BC=BCCB
7 6 eleq2i ABCABCCB
8 xor ¬ABACAB¬ACAC¬AB
9 5 7 8 3bitr4i ABC¬ABAC