Metamath Proof Explorer


Theorem elsymgbas

Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008) (Revised by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion elsymgbas A V F B F : A 1-1 onto A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 elex F B F V
4 3 a1i A V F B F V
5 f1of F : A 1-1 onto A F : A A
6 fex F : A A A V F V
7 6 expcom A V F : A A F V
8 5 7 syl5 A V F : A 1-1 onto A F V
9 1 2 elsymgbas2 F V F B F : A 1-1 onto A
10 9 a1i A V F V F B F : A 1-1 onto A
11 4 8 10 pm5.21ndd A V F B F : A 1-1 onto A