Metamath Proof Explorer


Theorem elsymgbas2

Description: Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015)

Ref Expression
Hypotheses symgbas.1 G = SymGrp A
symgbas.2 B = Base G
Assertion elsymgbas2 F V F B F : A 1-1 onto A

Proof

Step Hyp Ref Expression
1 symgbas.1 G = SymGrp A
2 symgbas.2 B = Base G
3 f1oeq1 x = F x : A 1-1 onto A F : A 1-1 onto A
4 1 2 symgbas B = x | x : A 1-1 onto A
5 3 4 elab2g F V F B F : A 1-1 onto A