Metamath Proof Explorer


Theorem eltayl

Description: Value of the Taylor series as a relation (elementhood in the domain here expresses that the series is convergent). (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φ S
taylfval.f φ F : A
taylfval.a φ A S
taylfval.n φ N 0 N = +∞
taylfval.b φ k 0 N B dom S D n F k
taylfval.t T = N S Tayl F B
Assertion eltayl φ X T Y X Y fld tsums k 0 N S D n F k B k ! X B k

Proof

Step Hyp Ref Expression
1 taylfval.s φ S
2 taylfval.f φ F : A
3 taylfval.a φ A S
4 taylfval.n φ N 0 N = +∞
5 taylfval.b φ k 0 N B dom S D n F k
6 taylfval.t T = N S Tayl F B
7 1 2 3 4 5 6 taylfval φ T = x x × fld tsums k 0 N S D n F k B k ! x B k
8 7 eleq2d φ X Y T X Y x x × fld tsums k 0 N S D n F k B k ! x B k
9 df-br X T Y X Y T
10 9 bicomi X Y T X T Y
11 oveq1 x = X x B = X B
12 11 oveq1d x = X x B k = X B k
13 12 oveq2d x = X S D n F k B k ! x B k = S D n F k B k ! X B k
14 13 mpteq2dv x = X k 0 N S D n F k B k ! x B k = k 0 N S D n F k B k ! X B k
15 14 oveq2d x = X fld tsums k 0 N S D n F k B k ! x B k = fld tsums k 0 N S D n F k B k ! X B k
16 15 opeliunxp2 X Y x x × fld tsums k 0 N S D n F k B k ! x B k X Y fld tsums k 0 N S D n F k B k ! X B k
17 8 10 16 3bitr3g φ X T Y X Y fld tsums k 0 N S D n F k B k ! X B k