Metamath Proof Explorer


Theorem eltg

Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)

Ref Expression
Assertion eltg B V A topGen B A B 𝒫 A

Proof

Step Hyp Ref Expression
1 tgval B V topGen B = x | x B 𝒫 x
2 1 eleq2d B V A topGen B A x | x B 𝒫 x
3 elex A x | x B 𝒫 x A V
4 3 adantl B V A x | x B 𝒫 x A V
5 inex1g B V B 𝒫 A V
6 5 uniexd B V B 𝒫 A V
7 ssexg A B 𝒫 A B 𝒫 A V A V
8 6 7 sylan2 A B 𝒫 A B V A V
9 8 ancoms B V A B 𝒫 A A V
10 id x = A x = A
11 pweq x = A 𝒫 x = 𝒫 A
12 11 ineq2d x = A B 𝒫 x = B 𝒫 A
13 12 unieqd x = A B 𝒫 x = B 𝒫 A
14 10 13 sseq12d x = A x B 𝒫 x A B 𝒫 A
15 14 elabg A V A x | x B 𝒫 x A B 𝒫 A
16 4 9 15 pm5.21nd B V A x | x B 𝒫 x A B 𝒫 A
17 2 16 bitrd B V A topGen B A B 𝒫 A