Metamath Proof Explorer


Theorem eltg4i

Description: An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion eltg4i A topGen B A = B 𝒫 A

Proof

Step Hyp Ref Expression
1 elfvdm A topGen B B dom topGen
2 eltg B dom topGen A topGen B A B 𝒫 A
3 1 2 syl A topGen B A topGen B A B 𝒫 A
4 3 ibi A topGen B A B 𝒫 A
5 inss2 B 𝒫 A 𝒫 A
6 5 unissi B 𝒫 A 𝒫 A
7 unipw 𝒫 A = A
8 6 7 sseqtri B 𝒫 A A
9 8 a1i A topGen B B 𝒫 A A
10 4 9 eqssd A topGen B A = B 𝒫 A